
Instructions:

This assessment consists of eight simple exercises (see the next page). Each exercise asks you to program a function. The following
information is given:

• The function header.
• A function description.
• Some examples of what the function should do.

Implement these eight functions in a single Python file named 'code.py' (otherwise the automatic tests will not accept your program). You
can assume that the input always adheres to the assignment description (for instance, if the assignment description says that a parameter is
an integer ≥ 1, you can assume that this will always be the case). Your program should not modify the value of the arguments.

You can test your program with the examples that are given in the exercise description, but be aware that the function should work for any
input that adheres to the assignment description, and not just those examples.

Exercises:

1. Program a function def f1(an_int). The parameter an_int is an integer ≥ 1. The function should return the greatest power of 3

that is smaller than or equal to an_int.

Examples:
f1(1) should return 1 (since 30 is 1)
f1(10) should return 9 (since 32 is 9, and 33 is 27)

2. Program a function def f2(an_int). The parameter an_int is an integer ≥ 0, and represents an amount of time in seconds. The

function should return a string that contains the time in the format hh:mm:ss.

Examples:
f2(234) should return '00:03:54'
f2(7322) should return '02:02:02'

3. Program a function def f3(a_list). The parameter a_list is a list of unique integers, that contains at least 2 elements. The

function should return a tuple containing the index and the value of the second smallest element in a_list.

Examples:
f3([4, 5, 6]) should return (1, 5)
f3([-3, -5, 7]) should return (0, -3)

4. Program a function def f4(a_list1, a_list2, an_int). The parameters a_list1 and a_list2 are both a list of integers, and the

parameter n is an integer ≥ 1. The function should return how many elements from a_list2 appear at least n times in a_list1.

Examples:
f4([1, 1, 2, 2, 2, 3, 3, 3, 3], [1, 2], 3) should return 1
f4([1, 1, 1, 2, 2, 2, 3, 3, 3], [1, 2, 3, 4], 4) should return 0

5. Program a function def f5(a_list). The parameter a_list is a list of integers. The function should return a list of slices from

a_list. The first slice in this list should contain the first element from a_list, the second slice in this list should contain the first 2
elements from a_list, etc.

Examples:
f5([1, 2, 3]) should return [[1], [1, 2], [1, 2, 3]]
f5([0, 0]) should return [[0], [0, 0]]
f5([]) should return []

6. Program a function def f6(a_str). The parameter a_str is a string. The function should return a new string, that contains all

characters from a_str that are not a letter or digit.

Examples:
f6('B -34;aJK+]\t>') should return ' -;+]\t>'
f6('python') should return ''

7. Program a function def f7(a_str). The parameter a_str is a string that contains words (consisting of lowercase letters) separated by

spaces. The function should return a dictionary that contains as keys each word from a_str, and as values the number of times that
each word appears in a_str.

Examples:
f7('de het de een') should return {'de': 2, 'het': 1, 'een': 1}
f7('') should return {}

8. Program a function def f8(a_str). The parameter a_str is a string that consists of multiple lines with exam results. Each line either
contains a grade (in the range [1.0, 10.0]), or an abbreviation (for example, 'NS' means 'No Show'). At least one line contains a grade.
The function should return the average of all grades that appear in a_str.

Examples:
f8('8\n8.2\n4.3\n9.5') should return 7.5
f8('7.5\nNS\n7\n3.5\nNVD') should return 6.0

