Project Application

Development
Building an IJVM emulator

SEBASTIAN OSTERLUND
Vrije Universiteit Amsterdam

August 8, 2017

ii

Contents

0.3.1 UNIX/CLI
0.3.2 xxd/ hexdump/ hexedit|

0.3.3 MIC-1 Emulator/ IJVM Assembler|

0.3.4 GITIo o

|1 Binaries, dreaded Binaries!|
[I.1 Command line arguments|
1.2 Iry-catch statement|
1.3 Reading filesin Java] 00 0.
1.4 Debugprints|
(L [JVM binaries|. o oo

[L.7 Suggested approach| 0oL

2.1 The stack abstract data typel

2.2 Information about thetaskl

2.3 Suggested approach|o 0oL

[3 Controlling the Flow: the GOTO solution]|
3.1 Basic branchingf{.
(3.2 Information about the taskl
3.3 Suggested approach|

iii

11
11
11
12
12
13
13
14
14

15
15
15
16
17

iv

|4 Local variables: Artisan and Organic!|

4.1 The constant pooll

4.4 Suggested approach| 0.

[6Call yourself a method]|

6.1 LJVM method invocation|
[5.2 Setting up a local frame|
5.3 Returning from a method|
Isli. l lllls!lllli!li!!ll ilt!gzlll llls: li!fil;l
5.5 Suggested approach|

|6 Even more stuff?! Because why not?|

[6.2.1 Debug symbols (additional 10%)|

[6.3 Network communication (10%)

6.1 Heap memory (10%)[.
6.2 Debugger (10%)]

CONTENTS

Preface

Welcome to the course Project Application Development!

Goal of this course

The main aim of this course is to give the student a more hands-on practical
experience with programming. By implementing a larger project with a basis
in material covered during the first year of the Computer Science bachelor,
you will have the opportunity to gain more experience developing software,
as well as showing off what you have learned during the first year.

Course in a nutshell

In this course you will implement an emulator capable of executing IJVM
byte-code, as covered in the course Computer Systems. The implementation
will be done in Java. The assignment is split into several smaller parts that
build up to the final deliverable. During this course you will get individual
guidance by a Teaching Assistant.

Structure of this reader

This reader is split into five units. Each chapter will build on the previous
chapters and introduce some new tasks.

About the grading

e Your program has to pass all the basic automatic tests. (50%)

e Your grade will depend on the number of passed advanced tests. (20%)

Your program will be graded on style and general impression. (20%)

You can achieve a higher grade by implementing additional function-
ality (20%). Note: you are only eligible for these points if you pass
the advanced tests.

2 CONTENTS

e Naturally, your final grade is capped at a 10.

Based on this grading scheme it is, thus, possible to pass the course by
passing the basic tests and getting a sufficent grade for the style.

Introductory Chapter

“However, as every parent of a small child knows, converting a
large object into small fragments is considerably easier than the
reverse process.”

— Andy Tanenbaum, Computer Networks, 4th ed

0.1 The IJVM architecture

During this course we will work extensively with the IJVM Instruction Set
Architecture as presented in [I]. The IJVM instruction set is a subset of
the Java instruction set, containing only operations on integers. It, thus,
removes much of the complexity added by typing. In this chapter we will
try to introduce some of the concepts in a simple manner. For more in-
depth details you have to read the book by Tanenbaum [I]. In the end of
the course you will have a fully functional IJVM emulator that can execute
IJVM bytecode. To achieve this we will split the project into five tasks:
Parsing the binary.

Implementing basic stack manipulation.

Implementing control flow.

L

Implementing operations on local variables.

5. Implementing method calls.
By implementing each task and thoroughly testing it, you will avoid common
pitfalls that become hard to debug at a later stageﬂ

0.1.1 IJVM memory layout

The IJVM is a stack-based architecture, meaning that (almost) all opera-
tions are performed on a stack. This is different compared to architectures
such as Intel x86 which performs its operations on registers. One main ben-
efit of a stack-based architecture is that the instruction set becomes simple,
since the operations don’t need a source and destination operand.

"We will provide a basic set of test cases for each stage of the assignment. Testing it
more thoroughly is up to you!

4 CONTENTS

The most essential part of the IJVM architecture is the stack. The stack
is built up of local frames, one for each method invoked. The bottom of
the frame contains a link pointer which points to the location at which the
previous program counter is stored. Above the link pointer, you can find
the method arguments and local variables (method arguments are treated
in roughly the same manner as local variables). Above the local variables,
you can find the previous frame pointer (Iv) and stack pointer (sp). The
values stored at these locations are restored appropriately when a method
returns. For a more detailed explanation of what the IJVM memory model
looks like, see [

0x8 k— Sp
0x42 bottom of the stack
prev_pc 0x17
) prev_lv
function
add
local var 1
arg_1
LINK_PTR (0x17) points to prev_ pc
. Ox11
function
main 0x10

The program code (also called TEXT) resides in its own location in
memory. The Program Counter (pc) keeps track of which instruction should
be executed next.

Besides the stack and the text, there is one other memory area, namely,
the constant pool. This area contains immutable constant values that are
loaded on program start-up.

2Structured Computer Organization, 4.2.2 p. 260

0.1. THE IJVM ARCHITECTURE

0.1.2 Instruction set

Table 1: The IJVM instruction set

Instruction Args

OpCode

Description

BIPUSH byte

0x10

Push a byte onto stack

DUP N/A

0x59

Copy top word on stack
and push onto stack

ERR N/A

0xFE

Print an error message
and halt the simulator

GOTO short

0xAT7

Unconditional jump

HALT N/A

0xFF

Halt the simulator

IADD N/A

0x60

Pop two words from
stack; push their sum

IAND N/A

0x7E

Pop two words from
stack; push bit-wise AND

IFEQ short

0x99

Pop word from stack and
branch if it is zero

IFLT short

0x9B

Pop word from stack and
branch if it is less than
Zero

IF_ICMPEQ short

0x9F

Pop two words from stack
and branch if they are
equal

IINC

byte byte

0x84

Add a constant value to a
local variable. The first
byte is the variable index.
The second byte is the
constant.

ILOAD byte

0x15

Push local variable onto
stack

IN N/A

0xFC

Reads a character from
the input and pushes it
onto the stack. If no
character is available, 0 is
pushed

INVOKEVIRTUAL | short

0xB6

Invoke a method, pops
object reference and pops
arguments from stack.

Continued on next page

CONTENTS

Table 1 — Continued from previous page

Instruction

Args

OpCode

Description

IOR

N/A

0xB0

Pop two words from
stack; push bit-wise OR.
Note: the book uses the
opcode 0x80.

IRETURN

N/A

0xAC

Return from method with
a word value

ISTORE

byte

0x36

Pop word from stack and
store in local variable

ISUB

N/A

0x64

Pop two words from
stack; subtract the top
word from the second to
top word, push the
answer;

LDC W

short

0x13

Push constant from
constant pool onto stack

NOP

N/A

0x00

Do nothing

ouT

N/A

0xFD

Pop word off stack and
print it to standard out

POP

N/A

0x57

Delete word from top of
stack

SWAP

N/A

0x5F

Swap the two top words
on the stack

WIDE

N/A

0xC4

Prefix instruction; next
instruction has a 16-bit
index

0.2. PROJECT SKELETON 7

0.2 Project skeleton

To make it easier to automatically test the submissions, we have provided a
skeleton layout for the project. You are allowed to change this layout, as long
as certain command still run successfully. The skeleton can be found at the
following URL: https://github.com/VU-Programming/IJVM-Skeleton

0.2.1 Gradle

To build the project we will use gmdle{ﬂ By executing gradle build in the
top level directory of the project, the project will be built. Using gradle
run, you can run your program. If you do not have gradle installed, do not
worry! The template includes a gradle wrapper (. /gradlew), that will down-
load gradle on-the-fly when executed. You can use the command ./gradlew
instead of gradle in all subsequent examples.

If you want to run your program with command line arguments, you
can build an executable jar using gradle jar and run it using java -jar
build/libs/ijvm. jar argl.

We have applied the idea (IntelliJ) and eclipse plugin to the gradle file. If
you want to import the project into eclipse, execute gradle eclipse in the
top-level directory. This will generate a project file that can be imported in
Eclipse. Likewise, if you run gradle idea, gradle will generate an IntelliJ
project for you.

0.2.2 Running the tests

We have provided a set of JUnit test cases for you to test your program
with. By passing all these basic tests, and getting a satisfactory grade for
style, you will be able to pass the course. You can run these tests using
./gradlew test.

Additionally, your program will also be tested against a number of ad-
vanced tests. These advanced tests can also be found in the project skeleton.
Passing these tests allows you to obtain a higher grade proportional to the
number of passed tests.

To only run a subset of the tests (e.g. to speed stuff up when debugging),
you can use the --tests flag. For example, to only run the tests for the
first module, execute ./gradlew test --tests pad.ijvm.Taskl.

0.2.3 Folder structure

In the provided template we include a number of folders. All your code
should be placed in the src/main/java/pad/ijvm folder. Please do not
alter this folder structure!. You are, however, allowed to add extra

3http://www.gradle.org

https://github.com/VU-Programming/IJVM-Skeleton
http://www.gradle.org

8 CONTENTS

packages in this folder. As long as the program compiles with gradle build
we are happy! In the interfaces-folder you can find the IJVMInterface.
Your main IJVM class should implement this interface, so that we can test
your program easily.

0.2.4 Requirements

1. The program should compile, using gradle assemble

2. The program should execute the binary binary.ijvm when executing
the command gradle jar followed by
java -jar build/libs/ijvm.jar binary.ijvm.

3. The tests in the folder src/test should execute successfully when
running gradle test.

0.3 Useful Tools
0.3.1 UNIX/ CLI

During this course you will make use of some kind of command line interface.
Although we strongly recommend you familiarize yourself with UNIX-like
systems (like Linux/BSD/Mac OS X)), it is still possible (albeit a bit harder)
to use a CLI on Windows. Be sure that you know how to compile Java
programs using the command line. If you are not familiar with compiling
programs using the command line in Windows have a look at the URL in
the footnote 4

0.3.2 xxd/ hexdump/ hexedit

Since you will be working with binary files, there are some tools that come
in handy when debugging and/ or creating test inputs. One utility, xxd,
creates a dump of a given file in hexadecimal (if you are not familiar with
hexadecimal notation, you should also read up on that a bitﬂ).

root@machine: xxd -g 1 -c 8 test.ijvm
00000000: 1d ea df ad 00 01 00 00
00000008: 00 00 00 00 00 00 00 00
00000010: 00 00 00 0d 10 31 fd a7 1..
00000018: 00 06 10 32 fd 10 33 fd ...2..3.
00000020: ff

Listing 1: Output of xxd on an ijvm binary.

“http://introcs.cs.princeton.edu/java/15inout/windows-cmd.html
Shttps://en.wikipedia.org/wiki/Hexadecimal

http://introcs.cs.princeton.edu/java/15inout/windows-cmd.html
https://en.wikipedia.org/wiki/Hexadecimal

0.3. USEFUL TOOLS 9

Modifying binary files can be done using an editor such as hexedit.

0.3.3 MIC-1 Emulator/ IJVM Assembler

Using the provided MIC-1 emulatoxﬁ from Tanenbaum’s book, you can as-
semble programs to test your own [JVM emulator. The assembled files have
a .ijvm extension, and follow the same format that we will use in this course.
You can also use the emulator to verify the behavior of your implementation.

For your convenience we (or rather Jur van den Berg) have written our
custom IJVM assembler with a command-line interface, called goJASME]7
which gives some more detailed error messages when assembly of a program
fails. See the documentation of goJASM for further instructions on how to
assemble IJVM programs.

0.3.4 GIT

Using version control is a must for larger projects. During this course you
will, incrementally, build a final application. Sometimes you might make
a design decision that at a later stage seems detrimental. In such cases it
is really useful to be able to revert back to a certain earlier stage. This is
where version control systems, such as SVN, Mercurial, and GIT come in
handy.

There exist numerous online tutorials on how to use GITFP} Furthermore,
it might be a good idea to use a service like GitHuHT_U] as a backup for your
code (but please do not make your code public).

Shttp://media.pearsoncmg.com/ph/esm/ecs_tanenbaum_sco_6/tanenbaum_sco6.
z1ip
"https://git.practool.xyz/nova/goJASM
Shttp://rogerdudler.github.io/git-guide/
%https://help.github.com/articles/good-resources-for-learning-git-and-github/
Ohttps://education.github.com

http://media.pearsoncmg.com/ph/esm/ecs_tanenbaum_sco_6/tanenbaum_sco6.zip
http://media.pearsoncmg.com/ph/esm/ecs_tanenbaum_sco_6/tanenbaum_sco6.zip
https://git.practool.xyz/nova/goJASM
http://rogerdudler.github.io/git-guide/
https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://education.github.com

10

CONTENTS

1

Binaries, dreaded Binaries!

TASK: 1) Read a filename from the command line arguments.
2) Read that file into a byte array, and extract the relevant IJVM
headers from it. 3) Finally, starting at the first instruction, print
the names (e.g. POP) of the instructions in the binary to the
standard output.

1.1 Command line arguments

In Java, the command line arguments are passed as a String array to the
main method of the called class. For example, invoking the program in
Listing [2| with java HelloWorld myname lastname 1337 would print the
following:

Hello, myname lastname. You entered 1337 as your favorite number.

public class HelloWorld {

public static void main(String argv([]) {
System.out.printf ("Hello, %s %s. You entered %s as
— your favorite number.",
argv([0], argv[1], argv[2]);
}

Listing 2: Example of reading command line arguments.

1.2 Try-catch statement

Some operations, like reading files, may fail if the file cannot be found.
In Java, these kinds of situations usually throw an exception. The Java

11

12 1. BINARIES, DREADED BINARIES!

compiler will usually complain if the exception is uncaught. Depending on
the situation, different problems raise different exceptions. For example,
reading a file can throw the following exceptions: FileNotFoundException
and I0Exception.

try {

File file = new File("non-existing.txt"); // read file
} catch (FileNotFoundException e) {

System.err.printf ("%s\n", e.getMessage());

}

Listing 3: Example of a try-catch statement.

1.3 Reading files in Java

In the course Introduction to Programming you have learned how to parse
files using the Scanner class in Java. Since the Scanner is mainly suitable
for parsing text, we will not use it for this course.

Furthermore, since the final program only has to be able to work on the
command-line, we will also not use 1ibUI (as used in the course Program-
ming).

A file can be read manually in Java by creating a new File object and
then reading from that file using a FileInputStream.

File file = new File("/path/to/file.txt");

byte[] bytes = new byte[(int) file.length()];
FileInputStream fileInputStream = new FileInputStream(file);
fileInputStream.read(bytes) ;

fileInputStream.close();

// The array ’bytes’ now contains the file

Listing 4: Example of reading a file.

1.4 Debug prints

It can be useful to print some debug information to the console while de-
veloping your program. In the next tasks we will test you program against
the output printed to the standard output, thus your program might fail
tests if you have some debug prints. We suggest you print debug messages

1.5. 1IJVM BINARIES 13

to stderr instead of stdout. You can achieve this by creating an new
PrintStream that prints to System.err.

1.5 IJVM binaries

In this course we will follow the binary layout of the IJVM binaries generated
by the emulator provided with the book [I]. The generated binaries consist
of a 32-bit magic number followed by a number of blocks. During this course,
you can safely assume that there are only two blocks: the first block is the
block containing constants, the second block contains the text (executable
code).

Every block starts with a 32-bit number signifying where to load it in
memory. Depending on your implementation, this can probably be ig-
nored. After this there is a second 32-bit number, describing the size of
the data in the block (the size is denoted in bytes). The rest of the block
contains the actual data.

binary file = <32-bit magic number> [block]* // 2 blocks: 1) Constants, 2) TEXT
block = <32-bit origin> <32-bit byte size> <data>
32-bit magic number = 1D EA DF AD

1.6 Information about the task

After reading the file, your IJVM should be ready to execute the binary.
When calling run your IJVM should start stepping (i.e. parsing one by one)
through all the instructions.

You can test your program by implementing the following: loop through
the TEXT section of the binary. Print the name of every instruction encoun-
tered (i.e. read the text byte by byte). If you encounter a byte that is not
an instruction (e.g. an argument to an instruction), skip that byte. Do not
worry about arguments that have the same value as an instruction, just print
the name of the corresponding instruction. Or, simply put: read one byte,
determine instruction, read one byte, determine instruction, etc. Also start
planning ahead a bit. For example, now is the perfect time to implement a
program counter mechanism!

Furthermore, your main IJVM class must implement the IJVMInterface
(this is required so that we can run some automatic tests against your imple-
mentation). You must also implement the MachineFactory class in such a
manner that it returns an instance of your IJVM class. The returned IJVM-
instance should not have executed yet, but be ready to execute when calling
run(). After implementing everything from this task you program should
pass the provided basic tests for this task.

14 1. BINARIES, DREADED BINARIES!

1.6.1 About the IJVMlInterface

Relevant IJVMInterface methods to implement (or start implementing) for
this task:

e step()

e run()

getText ()

getProgramCounter ()
e getInstruction()

The implementation of the other methods can be left empty (e.g. return
null).

BIPUSH
BIPUSH
IADD
ouT

Listing 5: The expected output for the binary taskl/programl.ijvm.

1.7 Suggested approach

Start by having a look at the classes given in the skeleton. The class Main
is invoked when your program starts. In this program you should call the
method MachineFactory.createlJVMInstance () to create a new instance
of your IJVM class.

In the method MachineFactory.createIJVMInstance() you need to
load the specified binary into your IJVM instance. For this purpose you can
use a separate class (e.g. BinaryLoader), which does all the parsing of the
input file.

In the IJVM you should implement the main functionality of the IJVM
interpreter. In the method run() you should run the loaded program as long
as there is a next instruction to read. You can parse the current instruction
using a switch-statement.

Finally, to keep track of at which instruction you currently are, you will
need a program counter, which is a property of the IJVM instance.

2

Stack up!

TASK: 1) Implement the stack memory, and 2) the common
operations on the stack. 3) Implement the basic IJVM stack
manipulation instructions, such as IADD, ISUB, and BIPUSH. 4)
Finally, read a simple provided binary, execute the instructions,
and print the whole contents of the stack (in hexadecimal) to the
standard output. Also implement the IN and QUT instructions.

2.1 The stack abstract data type

The stack is a data-structure that is essential in Computer Science. Without
the notion of a stack many concepts (like recursion) would be impossible.
The abstract data type of the stack describes four essential operations on a
stack:

e PUSH. Add an element to the top of the stack.
e POP. Remove one element from the stack, and return it.

e TOP. Return the element at the top of the stack without removing
it.

e SIZE. Return the size of the stack.

For more info in the stack abstract data type see the wikipedia pageﬂ

2.2 Information about the task

Since the IJVM instruction only addresses words (of 4 bytes), or rather all
stack operations operate on words, the implemented stack should operate
on words. You, thus, need to implement the Word class. In this class

"https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

15

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

16 2. STACK UP!

you can add methods and constructors that make the conversion from an
array of bytes to a word easier. It is also a good idea to make a method that
converts a Word to an integer.

When implementing this you should be aware that the byte primitive
type in Java is a signed byte. When converting a byte array to an integer,
you have to do something like the following to get a correct result:

int result = ((bytes[0] & OxFF) << 24) | ((bytes[1] & OxFF) <<
— 16) | ((bytes[2] & OxFF) << 8) | (bytes[3] & OxFF);

Listing 6: Example of converting a byte array to an int.

It is also very handy to make a utility method, that given a byte array,
prints it as hexadecimal to the the standard output. It is usually nice to
write 4 or 8 bytes per line.

0x00 0x00 0x00 0x42 0x00 0x00 0x00 0x42
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Listing 7: An example of what the output could look like.

For the OUT instruction, we want you to output the word at the top
of the stack interpreted as ASCII to the PrintStream specified by the
method setOutput. You can, by default, set the output to the standard
output. Also, do not forget to let your Machine class implement
the IJVMInterface. Some methods from the interface are not yet rele-
vant (e.g. getLocalVariable, and can thus return a value of your choosing
(common practise is to return 0 or null)).

2.2.1 About the IJVMlInterface

Relevant IJVMInterface methods to implement for this task:
e topOfStack()
e getStackContents ()
e setOutput ()

e setInput()

10

11

12

13

14

15

16

2.3. SUGGESTED APPROACH 17

public class Machine implements IJVMInterface {
private PrintStream out;

Machine () {
out = System.out;

/.

void setOutput (PrintStream out) {
this.out = out;

}

Zame

Listing 8: Example of setting the standard output.

2.3 Suggested approach

Since you are going to use a stack, it makes sense to implement a class
Stack. This stack contains elements of the type Word. In the word class it
is essential to make methods to convert a Word to an integer (so that you
can actually perform arithmetic operations on it). Also, it is a good idea to
implement a constructor for Word that creates a word given a byte-array.

Implementing the getStackContents() can be a bit tricky, depending
on your implementation of the Stack. The easiest solution is to add a
method toIntArray () to the Stack class. Another way of implementing it
is by making a copy of your stack object, and pop off the elements one by
one, adding them to the resulting int-array.

18

2. STACK UP!

3

Controlling the Flow: the
GOTO solution!

TASK: 1) Write a method to convert a byte array to an integer
so that you can read instruction operands. 2) Implement the
GOTO instruction. 3) Finally, implement the other control flow
instructions.

3.1 Basic branching

The idea behind the goto-instruction is really simple: add an offset to the
program counter, and continue executing the program from that address.
Other instructions such as IFEQ only branch if a certain condition is met,
otherwise the program just continues to the following instruction. In the
example in Listing [9] you can see how the GOTO should work.

3.2 Information about the task

Be sure to test your program carefully! There are some small caveats that
can cause errors in edge cases. For example, the byte following the GOTO-
instruction should be interpreted as a signed short (i.e. a signed number
consisting of 2 bytes). Also note that the offset is calculated from the be-
ginning of the branching instruction.

Something that should also be taken into consideration, is that the ad-
dressing for instructions is done on a byte-granularity-level, while all other
memory addressing is done on a word-level. In other words, the offset af-
ter the GOTO is an offset in bytes, while, for example the index argument to
LDC_W is an offset into the constant pool given in the unit of words (4 bytes).
Thus, LDC_W 0x2 pushes the third constant (thus at an offset 0x8 from the
beginning of the constant pool) to the stack.

19

10

11

12

13

14

15

16

20 3. CONTROLLING THE FLOW: THE GOTO SOLUTION!

.main
L1:
BIPUSH 0x31 // Push ’1°’ to stack
ouT // Print ’1°
GOTO L3 // Jump to L3
L2:
BIPUSH 0x32
ouT // Print 2’
L3:
BIPUSH 0x33
0UT // Print 3’
HALT
.end-main

Listing 9: Simple GOTO test code. The output of this example should be
13. The GOTO should skip over label L2, thus jumping to L3.

Table 3.1: Instructions to be implemented for this task

GOTO short | 0xA7 | Unconditional jump

IFEQ short | 0x99 | Pop word from stack and branch if it is
ZETro

IFLT short | 0x9B | Pop word from stack and branch if it is

less than zero

IF_ICMPEQ | short | 0x9F | Pop two words from stack and branch if
they are equal

3.3 Suggested approach

Since the branching instructions all have as argument a signed short (16 bit
integer), it is a good idea to create a method that reads a short at a certain
program address. Start by implementing the GOTO, as this is the easiest
instruction to implement.

10

11

12

13

14

15

16

3.3. SUGGESTED APPROACH 21

.main
L1:
BIPUSH OxA // push 10 to stack
L2:
BIPUSH 0Ox1
ISUB // Subtract 1
DUP
IFEQ END // Jump to end if zero
BIPUSH 0x31
OUT // Print 1
GOTO L2 // Repeat loop
END:
HALT
.end-main

Listing 10: Slightly more advanced branching test code. The output of this
example should be 111111111,

22 3. CONTROLLING THE FLOW: THE GOTO SOLUTION!

4

Local variables: Artisan and
Organic!

TASK: 1) Implement the constant pool (LDC_W instruction). 2)
Implement local variables (ILOAD and ISTORE instructions), 3)
the IINC instruction. 4) Finally, implement the WIDE instruction.

We are now close to having an emulator that can execute simple binaries!
After implementing local variables, you should be able to run most simple
programs.

4.1 The constant pool

The constant pool is the location in memory which contains read-only con-
stants. These constants are loaded into the constant pool at load-time, and
are never changed thereafter. Using the LDC_W instruction, a constant from
the constant pool can be pushed onto the stack. If you have not yet loaded
the constant pool from the binary (see Section for the layout of the
binaries), please do so now!

Implementing the LDC_W instruction is rather straight-forward:

1. Read the argument of the instruction (hereafter called the index). This
index is represented using an unsigned short.

2. Load the word at offset index from the constant pool. Note: addressing
in the constant pool is always done on a word-granularity level.

3. Push the loaded word to the stack.

4.2 The local frame

Implementing local variables is a bit trickier than the constant pool. The
first thing to notice is that the local variables reside in the local frame of the

23

24 4. LOCAL VARIABLES: ARTISAN AND ORGANIC!

current method while the constant pool stays the same, no matter in which
local frame you are. When defining a variable in the JAS-file, the assembler
gives every local variable a unique label, which happens to be the offset into
the local variable frame. For example, if a method has two variables a and
b, variable a could get the label 0, while b could get the label 1.

When encountering an operation on a local variable, the instruction
parameter is the numeric label. E.g. when encountering 0x15 0x0 (ILOAD
0x0), simply load the first local variable, and push it to the stack.

As you will see in the next chapter, the local frame contains some more
info besides local variables. If you have chosen for an object-oriented ap-
proach for you implementation, it may be a good idea to make a class Frame.
By keeping in mind that the memory layout of the IJVM can be viewed as a
stack of local frames, the implementation of method invocation will be much
less work.

4.3 Information about the task

While this task may not seem that hard, a bad design may come back
to haunt you when implementing methods. Think ahead! How does your
design fit together with method invocations?

Also make sure that you have implemented all the methods from the
IJVMInterface after finishing this task. It is much easier for you if you can
test that your program is correct before continuing to the next stage.

4.3.1 About the IJVMlInterface

Relevant IJVMInterface methods to implement for this task:
e getLocalVariable(int i).

e getConstant (int 1i).

4.4 Suggested approach

As mentioned the local variables reside in a local frame. The obvious choice
is, thus, to create a class Frame which contains the local variable of the
current frame. Furthermore, you can add your program counter as well as
your stack to the frame. This will make it much easier to implement method
invocations. You could view the frame as the state of your IJVM instance.

5]

Call yourself a method!

TASK: Implement the INVOKEVIRTUAL, IRETURN, and any other
instructions that you haven’t implemented yet.

5.1 IJVM method invocation

Method invocation on the IJVM can be a bit tricky. It has some strange
behavior that are left-overs from the Java Virtual Machine. For example,
when invoking a method, the caller has to push an Object-reference to the
stack as the first parameter. Since the IJVM does not support different
objects, pushing this reference has no meaningful functionality.

Before invoking a method, the caller also pushes the method arguments
to the stack. Thereafter INVOKEVIRTUAL is called with one argument, which
is a reference to a pointer in the constant pool. The pointer in the constant
pool in turn points to the first address of the method area. The method
area first contains two shorts (2 byte numbers), the first one signifying the
number of arguments the method expects, and the second one being the
local variable area size. The fifth byte in the method area is the actual
first instruction to be executed.

5.2 Setting up a local frame

When a method is invoked, a new local frame is created. In this local frame
one can find local variables, as well as the value of the previous program
counter. Have a look at Figure to see what the memory should look like
after a method invocation. Since you are building an emulator, the exact
memory layout does not need to be the same as in Figure however, it
is a nice starting point.

25

26 5. CALL YOURSELF A METHOD!

5.3 Returning from a method

At the end of a method, the IRETURN instruction is called. When this hap-
pens, the currents stack pointer as well as the program counter are restored
to the previous value. Finally, the top of the stack of the current frame is
returned by overwriting the pushed OBJREF with the value, and then point-
ing the stack pointer to this location. Another way of looking at this is that
the pushed arguments and the OBJREF are removed from the stack of the
previous frame, and then a return value is placed at the top of the stack.

5.4 Information about the task

This is by far the hardest task until now. You may have to re-write some
of your previous code because of incompatible design decisions. First get
a good overview of how the method invocation mechanism actually works,
then start implementing it!

Figure 5.1: The stack before and after INVOKEVIRTUAL.

Stack after
INVOKEVIRTUAL

Caller's LV ~—SP
—{ Caller's PC
Space for
Stack before caller's local
INVOKEVIRTUAL variables
Parameter3 |~—sP Slac‘;{ base Parameter 3
atter
Pushed Parameter 2 INVOKEVIRTUAL Parameter 2
parameters Parameter 1 Parameter 1
SECEIECE. } ___________ —I= Link ptr LV
Previous LV Previous LV
Previous PC = Previous PC
Caller's Caller's Caller's
local local local
variable variables Stack base variables
frame Parameter 2 before Parameter 2
Parameter 1 INVOKEVIRTUAL Parameter 1
- Link ptr i " IRIEE: SRR — Link ptr
(a) (b)

5.5 Suggested approach

Since you have the Frame-class, which represents the current state, invoking
a method should set up a new frame. To make it easier to return from a
method, you should always keep track of the previous frame. When return-
ing from a method, simple set the current frame to the previous frame, while
altering the stack of the previous frame slightly.

5.5. SUGGESTED APPROACH

Figure 5.2: The stack before and after IRETURN.

Caller's
local
variable
frame

Stack before

IRETURN
Return value |=—SP
Previous LV
| _Previous PC
Caller's
local
variables
Parameter 3 Sl%c%; base
Parameter 2 giora Stack after
IRETURN
Parameter 1 IRETURN
—I= Link ptr v #_ _______ Return value [=—SP
Previous LV Previous LV
P Previous PC Previous PC
Caller's Caller's
local local
variables Stack base variables
Parameter 2 after Parameter 2
Parameter 1 IRETURN Parameter 1
— Linkptr | X ___.C — Link ptr ~-— LV
(a (b)

27

28

5. CALL YOURSELF A METHOD!

6

Even more stuff?! Because
why not?

TASK: Implement additional functionality for the IJVM.

Please note: the rest of your program should be working correctly
before you start on the bonus. You will not be able to get bonus points if
your IJVM implementation does not work correctly.

You can get a total of 20% on your final grade by implementing additional
functionality. You can pick and choose what features you want to implement.
Some functionality is harder than others (as can be seen by how many points
you get for them).

For some of these additional features, we have provided some tests to
test your implementation, while others are more open-ended. Please discuss
your plan with your TA before starting to implement any of these additional
functionalities.

6.1 Heap memory (10%)

Currently all information in the IJVM is saved on the local stack. Sometimes
it is necessary to have persistent memory between method calls (this is really
necessary of you want to implement something like a database).

For this task you have to implement heap memory by implementing three
new instructions that work with heap-allocated arrays. The arguments of
these instructions should be placed on the stack in the order in which they
appear (i.e. the last argument is at the top of the stack when the instruction
is executed).

29

30 6. EVEN MORE STUFF?! BECAUSE WHY NOT?

Table 6.1: IJVM Heap instructions. All the arguments are
placed on the stack.

Instruction | OpCode | Args Description

NEWARRAY | 0xD1 count Create new array on
the heap. The count
must be of type int.
The count is
popped of the stack
and replaced by an
array reference that
can be used to refer
to the newly created
array.

TALOAD 0xD2 index, arrayref Load the value
stored and location
index in the array
referenced by
arrayref.

TASTORE 0xD3 value, index, arrayref | Store value at
location index in
the array referenced
by arrayref.

6.2 Debugger (10%)

For this task you have to write an interactive memory debugger with roughly
the same functionality as GDBH The program should start on the command
line and give the user a prompt.

Your debugger should have the following commands:

e help prints help on how to use the debugger.
e file <binary> loads the specified binary.

e run run until the next breakpoint is encountered. If the program has
already started, stop and start again.

e input <file> sets the IJVM standard input to contain contents of
specified file.

e break <addr> sets a breakpoint for instruction at address addr.

"https://www.gnu.org/sof tware/gdb/

https://www.gnu.org/software/gdb/

6.2. DEBUGGER (10%) 31

e step should perform one instruction.
e continue should continue executing until the next breakpoint.

e info frame should show the local stack (in hexadecimal) and variables
of the current frame.

e backtrace should show a call-stack of all frames (i.e. in which order
methods have called each other and with what arguments).

Create a new program IJDB that reads commands from the command
line, and starts up a new IJVM instance that can be debugged when the
run command is executed.

6.2.1 Debug symbols (additional 10%)

To earn an additional 10% you have to implement handling of debug
symbols. The goJASM assembler can add debug symbols to a binary. The
debug symbols allows you to break the execution at a certain method or at
a certain label. Extend the break command such that besides an address,
you could also provide a label or a method to break at. E.g. break myfunc,
should break the execution when the method myfunc starts executing.

The debug symbols for methods and labels can be found in the third
and fourth block of the binary respectively. The format of these sections is
as follows:

debugblock = [entry]=*

entry = <32-bit instruction address> <symbol name> <null terminator>
symbol name = [char]+

char = <any ASCII letter>

null terminator = ’\0’

For example, suppose you have a debug section with an entry with
address 0x1337 and symbol name 133tfunction. If you execute break
133tfunction, you should break at the address 0x1337. The debug symbols
for labels should be handled in the same manner. Since different methods can
have labels with the same identifier, the assembler automatically prepends
the method name to the identifier of labels (e.g. label L1 in myfunc becomes
myfunc#L1).

32 6. EVEN MORE STUFF?! BECAUSE WHY NOT?

6.3 Network communication (10%)

As seen in the course Computer Networks, most modern applications depend
on networked access to other devices. For this assignment you have to extend
your IJVM to support one network connection. Implement the following
instructions:

Table 6.2: IJVM network instruction set. All instruction
arguments are placed on the stack

Instruction OpCode | Args Description

NETBIND OxE1 port Pops port of the stack and
starts a network connection
on specified port.

NETCONNECT | 0xE2 host,port | Opens a network connection
to the specified host (ipv4
address encoded in one word)
and specified port. This
instruction places a boolean
on the stack, indicating
wether the connection

succeeded.
NETIN 0xE3 Reads a character from the
active network connection.
NETOUT 0xE4 char Pops a word from the stack

and writes that character to
the network.

NETCLOSE 0xEb5 C loses the current network
connection.

You are allowed to use the built in network stack of Java?} so you do
not have to worry about implementing TCP. You also only need to support
one network connection at a given time (so the IJVM has a global network
connection, which you can view as an output device). We have provided you
with some test-cases that show how the network communication is supposed
to work. You can enable these tests by modifying the build.gradle file in
your project folder.

%https://docs.oracle.com/javase/8/docs/technotes/guides/net/

https://docs.oracle.com/javase/8/docs/technotes/guides/net/

Bibliography

[1] Andrew S Tanenbaum. Structured computer organization. Pearson, 2006.

33

	The IJVM architecture
	IJVM memory layout
	Instruction set

	Project skeleton
	Gradle
	Running the tests
	Folder structure
	Requirements

	Useful Tools
	UNIX/ CLI
	xxd/ hexdump/ hexedit
	MIC-1 Emulator/ IJVM Assembler
	GIT

	Binaries, dreaded Binaries!
	Command line arguments
	Try-catch statement
	Reading files in Java
	Debug prints
	IJVM binaries
	Information about the task
	About the IJVMInterface

	Suggested approach

	Stack up!
	The stack abstract data type
	Information about the task
	About the IJVMInterface

	Suggested approach

	Controlling the Flow: the GOTO solution!
	Basic branching
	Information about the task
	Suggested approach

	Local variables: Artisan and Organic!
	The constant pool
	The local frame
	Information about the task
	About the IJVMInterface

	Suggested approach

	Call yourself a method!
	IJVM method invocation
	Setting up a local frame
	Returning from a method
	Information about the task
	Suggested approach

	Even more stuff?! Because why not?
	Heap memory (10%)
	Debugger (10%)
	Debug symbols (additional 10%)

	Network communication (10%)

