
The C 
abstract machine model

Systems Programming 2014-2015

1dinsdag 9 september 2014



Concepts

Objects

Lifetimes

Storage

Designators

Visibility, scope

Linkage

Execution unit(s)

System services

Unspecified behavior

Undefined behavior

2dinsdag 9 september 2014



Objects in C
Based on: ISO 9899:2011 section 6.2,

and “Semantics of C objects”, Appendix F of “On 
the realizability of hardware microthreading”

http://hdl.handle.net/11245/2.109511 

3dinsdag 9 september 2014



Storages & lifetime
Static, thread, automatic, allocated

Loosely answers “in which part of memory?”

Storage determines lifetime

The following properties are fixed during the lifetime 
of an object:

mutability: whether the object can be written to

addressability: whether its address is visible

its size in chars

4dinsdag 9 september 2014



Storages & lifetimes
Definition Storage Lifetime Initialization

Defined with “static” in 
function or as global variable static Entire 

execution

Once, 
before 
startup

Defined with 
“_Thread_local” thread Thread’s At thread 

start

Local variable, no “static” auto Block or 
exp none

...alloc(), sbrk(), mmap(), 
tss_create() alloc Until 

freed none

5dinsdag 9 september 2014



Objects & designators

Two ways to “make” objects and designators:

Declaration syntax (eg. “int x”):

Definitions: new designator AND object

Declarations: new designator only

Expressions (eg. “3+2”, “foo()”); 

These always have “automatic” storage

6dinsdag 9 september 2014



Objects & designators

There may be multiple designators to an object

After:
int x; char *p = (char*)&x;
void* foo() { return &x; }

Both “x”, “*p” and “*foo()” designate the same 
object 

Types are properties of designators, not objects

Objects are just arrays of chars, always (in C/C++)

7dinsdag 9 september 2014



Two kinds of designators

Primary designators: at most one per object
(perhaps zero)

Only for non-allocated objects

Derived from object definition

“Honest” about mutability - either const or not

No primary designator implies object is mutable

Secondary designators: everything else

Can lie about mutability

8dinsdag 9 september 2014



Linkage
Linkage answers “When do two separate designators refer to the same 
object?” (only for objects with static storage)

External linkage: 1 object program-wide
   int x; // in global scope
   void foo() { static int z; }

Internal linkage: 1 object per translation unit
   static int x; // in global scope

No linkage: 1 object per definition/activation

“extern”: does not mean what you think it means

after a 1st declaration that specifies linkage: same linkage as 1st

in 1st declaration, or after declaration w/o linkage info: then external

9dinsdag 9 september 2014



Visibility
Where is a designator visible? everything decided by 
scope (block structure { ... })

No surprise: same as Java, C++, C# etc

Example:
   int x = 1;
   int foo() {
      int x = 2;
      if ( ... ) { int x = 3 ; return x; }
   }
3 different objects, 3 different designators,
Calling foo() returns 3

10dinsdag 9 september 2014



Visibility

Another example:
   int x = 1;
   int foo() {
      int x = 2;
      if ( ... ) { extern int x; return x; }
   }
2 different objects, 2 different designators,
Calling foo() returns 1

11dinsdag 9 september 2014



Mutability

const int x = 3; // ok

const int x; x = 3; // invalid

int x; // x is mutable, “x” primary designator
const int *p = &x; // p lies, “*p” secondary designator
int *m = (int*) p; // m restores the truth
*m = 3; // ok

const int x = 3;
int *p = (int*)&x; // p lies
*p = 3; // UNDEFINED (x is really immutable)

12dinsdag 9 september 2014



Machine behavior

13dinsdag 9 september 2014



In a nutshell
Execution starts with main()

or really _start on most POSIX systems

When main() returns or exit() is called, all functions registered with 
atexit(3) are called in turn - Bypass with _Exit or terminating signal

Execution may be arbitrarily preempted by signal delivery

control with signal(3)   (ISO C)   
or sigaction(3)    (POSIX, preferred)

 1 initial thread; new threads created with thrd_create()

Since ISO C 2011 only (POSIX has pthread_create)

Complex semantics wrt. shared data & signals - avoid if possible!

14dinsdag 9 september 2014



Undefined vs unspecified

Three parties to decide what a program means: 
C standard, language implementation, run-time 
environment

C standard defines / specifies most of it

“Unspecified” means the C standard is silent, but 
implementation or environment decide something

“Undefined” means “HERE BE DRAGONS”

15dinsdag 9 september 2014



Examples 
unspecified behavior
The order function arguments are evaluated:
foo(bar(), baz()); // is bar called first or baz?

The value of uninitialized objects
   eg: int x; int z = x ^ x;  // z always 0

Read position in file after ungetc(3)

Relative position or contiguity of objects 
allocated by malloc() etc

16dinsdag 9 september 2014



Examples 
undefined behavior

Accessing an object outside of its lifetime

Accessing a position “outside” of an object

Writing to an immutable object,
eg: const int x = 3; int *p = &x; *p = 4;

Exiting from a non-void function without a 
value, eg: int foo() { }

17dinsdag 9 september 2014



What really happens upon 
reaching undefined behavior?

Execution stops rare

Signal is delivered rare

Unrelated objects unpredictably modified common

Execution continues from a predictable position uncommon

Execution continues from an unpredictable position common

If execution continues, further code changes meaning common

18dinsdag 9 september 2014



Signal delivery

What happens when a signal occurs?

If signal is ignored (SIG_IGN), nothing happens

Otherwise:

If in program or library code (incl libc): current 
function pauses, signal handler runs

Can’t return for SIGSEGV, SIGILL or SIGFPE

If in system call (open, write, ...): it’s complicated

19dinsdag 9 september 2014



Signal delivery

Signal occurs in system call: two families

“SysV” family, including Linux:

system call completes, THEN signal is delivered

Program always sees complete system calls

“BSD” family, including MacOS X:

system call is interrupted!

Programs sees EINTR, must re-try

20dinsdag 9 september 2014



Signal delivery

Example:
   sz = read(0, buf, 10);
   if (sz < 10) exit(1); // error

This code may fail too often on BSD

Rewrite as follows (or something similar):
do { 
   sz = read(0, buf, 10); 
} while(errno == EINTR);

21dinsdag 9 september 2014



System calls & errno

write(2), open(2), etc are wrappers provided by a POSIX-
compliant C library

You can “roll your own” with inline assembly

Different mechanism on each OS

In POSIX, system calls return 2 things:

Their direct return value 

An error code, which libc stores in “errno” 

“errno” looks&feels like a variable, but usually isn’t

22dinsdag 9 september 2014



Variable argument lists

23dinsdag 9 september 2014



In a nutshell

printf(const char *, ...)

the “...” is called “ellipsis”, means 0 or more 
arguments are accepted there

Inside the function use the extra arguments 
with va_start, va_arg, va_end

Declared in stdarg.h

See manual pages for details!

24dinsdag 9 september 2014


